Secundaria. Segundo grado.

Ciencias y Tecnología 2. Física

Patria Educación

El origen del Universo

Respuestas del libro

Transformamos saberes

1.

Respuesta:

Teoria del Origen del Universo (Big Bang)

Michio Kaku ha señalado cierta paradoja en la denominación "big bang" (gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo; habría sido el mismo big bang lo que habría generado las dimensiones desde una singularidad. Y tampoco es exactamente una explosión en el sentido propio del término, ya que no se propagó fuera de sí mismo.

Basándose en medidas de la expansión del universo utilizando observaciones de las supernovas tipo 1a, en función de la variación de la temperatura en diferentes escalas en la radiación de fondo de microondas y en función de la correlación de las galaxias, la edad del universo es de aproximadamente 13,7 ± 0,2 miles de millones de años. Es notable el hecho de que tres mediciones independientes sean conincidentes, por lo que se considera una fuerte evidencia del llamado modelo de concordancia que describe la naturaleza detallada del universo.

El universo en sus primeros momentos estaba lleno homogénea e isótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de fase análogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.

Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el universo se expandiese de forma exponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en forma relativista. Con el crecimiento en tamaño del universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el universo la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300 000 años los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente de hidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Esta es la radiación de fondo de microondas.

Al pasar el tiempo algunas regiones ligeramente más densas de la materia casi uniformemente distribuida crecieron gravitacionalmente, haciéndose más densas, formando nubes, estrellas, galaxias y el resto de las estructuras astronómicas que actualmente se observan. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el universo. Los tres tipos posibles se denominan materia oscura fríamateria oscura caliente y materia bariónica. Las mejores medidas disponibles (provenientes del WMAP) muestran que la forma más común de materia en el universo es la materia oscura fría. Los otros dos tipos de materia solo representarían el 20 por ciento de la materia del universo.

El universo actual parece estar dominado por una forma misteriosa de energía conocida como energía oscura. Aproximadamente el 70 por ciento de la densidad de energía del universo actual está en esa forma. Una de las propiedades características de este componente del universo es el hecho de que provoca que la expansión del universo varíe de una relación lineal entre velocidad y distancia, haciendo que el espacio-tiempo se expanda más rápidamente de lo esperado a grandes distancias. La energía oscura toma la forma de una constante cosmológica en las ecuaciones de campo de Einstein de la relatividad general, pero los detalles de esta ecuación de estado y su relación con el modelo estándar de la física de partículas continúan siendo investigados tanto en el ámbito de la física teórica como por medio de observaciones.

Paco está trabajando en
las respuestas de esta página. Pronto estarán disponibles.
El efecto doppler

Explicación del efecto doppler


Respuesta:

¿Alguna vez te has preguntado cómo viaja el sonido? En una respuesta rápida y sencilla, el sonido se traslada en ondas a una velocidad de 331,5 m/s en el aire. Su velocidad depende del medio por el que viaja. Pero, ¿y si el emisor del sonido también está en movimiento? Esto es algo que Christian Andreas Doppler, un matemático y físico austriaco, quiso saber. Como resultado de su investigación planteó el efecto Doppler.

El efecto Doppler se define como el cambio de frecuencia aparente de una onda producida por el movimiento relativo de la fuente respecto a su observador. El ejemplo más claro del efecto Doppler, y el que más nos encontramos, es el del sonido de una ambulancia o un coche con sirena

En la astronomía, el efecto Doppler sirve para calcular la velocidad a la que las estrellas y las galaxias se están acercando o alejando de la Tierra. También se utiliza en algunos tipos de radar para medir la velocidad de objetos detectados. o la medición del flujo sanguíneo ha tenido parte el efecto Doppler.

¿Tienes más tarea?

¿Tarea de otro libro?

Paco tiene toda la ayuda que necesitas

Busca tu tarea